翻訳と辞書
Words near each other
・ Prarostino
・ Prarthana (1943 film)
・ Prarthana (film)
・ Prarthana Behere
・ Prarthana Samaj
・ Prarthana Thombare
・ Prarthana TV
・ Prarthi Dholakia
・ Prandotów
・ Prandtl (crater)
・ Prandtl condition
・ Prandtl number
・ Prandtl–Glauert singularity
・ Prandtl–Glauert transformation
・ Prandtl–Meyer expansion fan
Prandtl–Meyer function
・ Praneet Bhat
・ Praneeth Hewage
・ Praner Cheye Priyo
・ Pranesh Padmanabhan
・ Pranesus
・ Praneuf (surname)
・ Prang
・ Prang (architecture)
・ Prang Ku District
・ Prang, Khyber Pakhtunkhwa
・ Prangbung
・ Prange
・ Prange Way
・ Pranger


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Prandtl–Meyer function : ウィキペディア英語版
Prandtl–Meyer function

Prandtl–Meyer function describes the angle through which a flow can turn isentropically for the given initial and final Mach number. It is the maximum angle through which a sonic (M = 1) flow can be turned around a convex corner. For an ideal gas, it is expressed as follows,
: \begin \nu(M)
& = \int \fracM^2}\frac \\
& = \sqrt} \cdot \arctan \sqrt (M^2 -1)} - \arctan \sqrt \\
\end
where, \nu \, is the Prandtl–Meyer function, M is the Mach number of the flow and \gamma is the ratio of the specific heat capacities.
By convention, the constant of integration is selected such that \nu(1) = 0. \,
As Mach number varies from 1 to \infty, \nu \, takes values from 0 to \nu_\text \,, where
: \nu_\text = \frac \bigg( \sqrt} -1 \bigg)
where, \theta is the absolute value of the angle through which the flow turns, M is the flow Mach number and the suffixes "1" and "2" denote the initial and final conditions respectively.
== See also ==

* Gas dynamics
* Prandtl–Meyer expansion fan

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Prandtl–Meyer function」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.